Including a non-holonomic constraint in the FSP (full space parameterization) method for mobile manipulators' motion planning

نویسندگان

  • François G. Pin
  • Charles J. Hacker
  • Kathryn B. Gower
  • Kristi A. Morgansen
چکیده

The efficient utilization of the motion capabilities of mobile manipulators, Le., manipulators mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by the addition of the degrees of freedom (d.0.f.) of the platform to those of the manipulator. At the velocity level, the linearized Jacobian equation for such a redundant system represents an underspecified system of algebraic equations, which can be subject to a set of constraints such as obstacles in the workspace and various limits on the joint motions. A method, which we named the FSP (Full Space Parameterization), has recently been developed to resolve such underspecified systems with constraints that may vary in time and in number during a single trajectory. The application of the method to motion planning problems with obstacle and joint limit avoidance was discussed in some of our previous work. In this paper, we present the treatment in the FSP of a non-holonomic constraint on the platform motion, and give corresponding analytical solutions for resolving the redundancy with a general optimization criterion. Comparative trajectories involving a 10 d.0.f. mobile manipulator testbed moving with and without a non-holonomic constraint for the platform motion, are presented to illustrate the use and efficiency of the FSP approach in motion planning problems for highly kinematically redundant and constrained systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance

Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...

متن کامل

Resolving kinematic redundancy with constraints using the FSP (full space parameterization) approach

A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the...

متن کامل

Maximum Allowable Load On Wheeled Mobile Manipulators (RESEARCH NOTE)

This paper develops a computational technique for finding the maximum allowable load of mobile manipulators for a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints a...

متن کامل

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997